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Abstract

Double-diffusive convective flow in a rectangular enclosure with the upper and lower surfaces being insulated and impermeable is studied
numerically. Constant temperatures and concentration are imposed along the left and right walls of the enclosure. In addition, a uniform magnetic
field is applied in a horizontal direction. Laminar regime is considered under steady state condition. The transport equations for continuity,
momentum, energy and spices transfer are solved. The numerical results are reported for the effect of thermal Rayleigh number, heat generation
or absorption coefficient and the Hartmann number on the contours of streamline, temperature, and concentration as well as the dimensionless
density. In addition, the predicted results for the average Nusselt and Sherwood numbers are presented and discussed for various parametric
conditions. This study was done for constant aspect ratio A = 2, Lewis number Le = 1 and Prandtl number Pr = 0.7. The study covers ranges for
103 � RaT � 106, 0 � Ha � 200, −50 � φ � 25 and −10 � N � 10.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Natural convection is of a great importance in many indus-
trial applications. Convection plays a dominant role in crystal
growth in which it affects the fluid-phase composition and tem-
perature at the phase interface. It is the foundation in mod-
ern electronics industry to produce pure and perfect crystals
to make transistors, lasers rods, microwave devices, infrared
detectors, memory devices, and integrated circuits. Natural con-
vection adversely affects local growth conditions and enhances
the overall transport rate. In addition, the application of a mag-
netic field in various research areas has significantly increased
in recent years. The development of super-conducting magnets
has allowed the generation of magnetic fields up to 20 T (or
higher with hybrid magnets), as reported by Ujihara et al. [1].

Many investigators studied the simple rectangular and square
cavities with temperature gradient experimentally and numer-
ically. A good review was reported by Ostrach [2]. A compli-
cated inclined cavity with inner heat generation was studied nu-
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merically by Acharya and Goldstein [3]. They introduced two
Rayleigh numbers. The first is internal Rayleigh RaI , based on
the rate of heat generation and external Rayleigh number RaE ,
based on temperature difference. Their study covered a range
for RaI from 104 to 107 and RaE from 103 to 106, and cavity
inclination angle from 30◦ to 90◦. Also, Rahman and Sharif [4]
studied numerically the same geometry with heated bottom and
cooled top surfaces and insulated sides. In their study, both RaI

and RaE were 2 × 105 and the aspect ratio ranged from 0.25
to 4. They found that for RaE/RaI > 1, the convective flow and
heat transfer were almost the same as that in a cavity without
internal heat generating fluid and they observed similar results
as in Acharya and Goldstein [3]. Oztop and Bilgen [5] studied
numerically the presence of a partial divider in a differentially
heated enclosure containing heat generating fluid which adds
an additional dynamic effect to overall convection characteris-
tics. Their study covered both RaI and RaE over a range from
103 to 106. Also, they studied the various partial divider geom-
etry and position. In their study they used a modified version of
the general-purpose SAINTS software (Software for Arbitrary
Integration of Navier–Stokes Equation with a Turbulence and
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Nomenclature

A aspect ratio, H/L

Bo magnetic induction . . . . . . . . . . . . Tesla = N/A m2

c vapour concentration
ch concentrations at the left wall of the cavity
cl concentrations at the right wall of the cavity
C dimensionless vapour concentration, C = (c − cl)/

(ch − cl)

D mass diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
g acceleration of gravity . . . . . . . . . . . . . . . . . . . m/s2

GrS solutal Grashof number
GrT thermal Grashof number
h heat transfer coefficient . . . . . . . . . . . . . . . W/m2 K
hs solutal transfer coefficient . . . . . . . . . . . . . . . . . m/s
H cavity height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Ha Hartmann number, BoL

√
σ/μ

k fluid thermal conductivity . . . . . . . . . . . . . . W/m K
L cavity width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Le Lewis number, Le = α/D = Sc/Pr
N buoyancy ratio
Nu average Nusselt number, Nu = hL/k

Nui local Nusselt number
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m2

P dimensionless pressure, P = pH 2
o /ρoα

2

Pr Prandtl number, Pr = ν/α

Qo heat generation or absorption
coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . W/m3 ◦C

RaS solutal Rayleigh number, RaS = Gr∗
SPr

RaT thermal Rayleigh number, RaT = Gr∗
T Pr

Sc Schmidt number, Sc = ν/D

Sh average Sherwood number, Sh = hsL/D

Shi local Sherwood number
T local temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . K
Tc cold wall temperature . . . . . . . . . . . . . . . . . . . . . . . K
Th hot wall temperature . . . . . . . . . . . . . . . . . . . . . . . . K
�T temperature difference, Th − Tc . . . . . . . . . . . . . . K
u velocity components in x direction
v velocity components in y direction
U dimensionless velocity component in X direction
V dimensionless velocity component in Y direction
x, y dimensional coordinates
X,Y dimensionless coordinates

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . m2/s
βT coefficient of thermal expansion . . . . . . . . . . . K−1

βS coefficient of solutal expansion . . . . . . . . . . m3/kg
φ dimensionless heat generation or absorption
θ dimensionless temperature, (T − Tc)/(Th − Tc)

μ dynamic viscosity . . . . . . . . . . . . . . . . . . . . . . kg/m s
ν kinematics viscosity . . . . . . . . . . . . . . . . . . . . . m2/s
ρ local fluid density . . . . . . . . . . . . . . . . . . . . . . kg/m3

ρo fluid density at the bottom surfaces . . . . . . . kg/m3

ρ∗ dimensionless density = NC − θ

σ electrical conductivity . . . . . . . . . . . . . . . . . . A m/V
Ψ dimensionless stream function
Ψmax maximum dimensionless stream function
Porous Media Simulator). SAINTS makes use of the SIMPLE
algorithm explained by Patankar [6].

One of the effective means practiced in industry for ther-
mally induced melt flow control is magnetic damping, which is
derived from the interaction between an electrically conducting
melt flow and an applied magnetic field to generate an opposing
Lorentz force to the convective flows in the melt. The damp-
ing effect depends on the strength of the applied magnetic field
and its orientation with respect to the convective flow direction.
Substantial theoretical and numerical work, thus far, has ap-
peared on magnetic damping for natural convection as reported
by Shu et al. [7]. Ozoe and Okada [8] conducted a numerical
analysis of the magnetic damping effect in a cubic cavity with
two vertical walls at different temperatures. They found that
the strongest damping effect is achieved with the magnetic field
applied perpendicular to the hot wall. This is consistent with
the work of Alboussière et al. [9] who used an asymptotic ap-
proach, and found that for a rectangular box, the damping effect
is the weakest when the applied magnetic field is horizontal and
parallel to the hot wall. Wakayama [10] reported a jet flow of
nitrogen gas in a decreasing magnetic field as another example
of this magnetic force. Bai et al. [11] made a numerical analy-
sis for this study. Tagawa et al. [12] employed a similar way to
Boussinesq approximation for this magnetic force and carried
out numerical analysis for natural convection of air in a cubic
enclosure. Kaneda et al. [13] studied the natural convection in a
cube enclosure filled with air. The cube was heated from above
and cooled from bottom and the air was driven by a magnetic
force. Xu et al. [14] studied experimentally the thermally in-
duced convection of molten gallium in magnetic fields.

During the magnetic liquid encapsulated Czochralski
(MLEC) growth of compound semiconductor crystals, a single-
crystal seed is lowered through the encapsulate which initiates
solidification and crystal growth begins in the presence of an ex-
ternally applied magnetic field. Morton et al. [15] presented a
model of dopant transport during the MLEC process. Previous
researchers have investigated the effect of a steady magnetic
field on two-dimensional natural convection in rectangular en-
closures. Ma and Walker [16,17] conducted a model of dopant
transport during Bridgman crystal growth with magnetically
damped buoyant convection and followed it by a parametric
study of segregation effects during vertical Bridgman crystal
growth with an axial magnetic field. Kuniholm and Ma [18]
used an asymptotic analysis in order to investigate the inter-
action between the melt and the encapsulant in a rectangular
enclosure with strong magnetic fields. Yang and Ma [19] stud-
ied natural convection in a liquid encapsulated molten semicon-
ductor with a horizontal magnetic field numerically. Recently,
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Wang and co-workers [20–24] conducted very strong series of
numerical researches in different methods of crystal growth
with electric and magnetic fields in alloys manufacture.

Nishimura et al. [25] studied numerically the oscillatory
double-diffusive convection in a rectangular enclosure with
combined horizontal temperature and concentration gradients.
They concluded that the oscillatory double-diffusive convection
with the secondary cell flow structure occurs for a certain range
of buoyancy ratio from N = 1.044 to 1.122. Chamkha and
Al-Naser [26] studied numerically the hydromagnetic double-
diffusive convection in a rectangular enclosure with opposing
temperature and concentration gradients. Their cavity and con-
ditions were similar to that of Nishimura [25] but they imposed
magnetic field and heat generation. They found that the effect
of the magnetic field reduced the heat transfer and fluid circula-
tion within the enclosure. Also, they concluded that the average
Nusselt number increased owing to the presence of a heat sink
while it decreased when a heat source was present. And they re-
ported that the periodic oscillatory behavior in the stream func-
tion inherent in the problem was decayed by the presence of the
magnetic field. This decay in the transient oscillatory behavior
was speeded up by the presence of a heat source. Chamkha and
Al-Naser [27] extended their previous work by changing the
boundary conditions of vertical walls to be at constant heat and
mass fluxes.

This study is a parametric study and extension for Chamkha
and Al-Naser [26,27] study. A wide range for thermal Rayleigh
number is studied from 103 to 106. This range covers most of
the engineering and industrial applications. In addition, a strong
magnetic field required for modern electronic devices is con-
sidered in this study. For this reason the Hartmann number is
increased to 200. Also, the heat generation and absorption co-
efficients range from −50 to +25. Moreover, the buoyancy ratio
varied from −10 to +10.

2. Mathematical model

The schematic of the system under consideration is shown
in Fig. 1. The temperatures Th and Tc are uniformly imposed
along the vertical walls. The top and bottom surfaces are as-
sumed to be adiabatic and impermeable. The left wall is the
source for both heat and mass. A magnetic field with uni-
form strength B0 is applied in the horizontal direction. Also,
the enclosure is filled with a binary mixture of gas. The fluid
is assumed to be incompressible, Newtonian, heat generating
or absorbing and viscous. Both the viscous dissipation and
magnetic dissipation are assumed to be negligible. The mag-
netic Reynolds number is assumed to be so small that the
induced magnetic field is neglected. The Boussinesq approxi-
mation equation (1) with opposite and compositional buoyancy
forces is used for the body force terms in the momentum equa-
tions.

ρ = ρo

[
1 − βT (T − Tc) − βS(c − cl)

]
(1)

The governing equations for the problem under considera-
tion are based on the balance laws of mass, linear momentum,
thermal energy and concentration in two dimensions steady
Fig. 1. A schematic diagram for the problem with boundary conditions.

state. Following the previous assumptions, these equations can
be written in dimensional form as:
∂u

∂x
+ ∂v

∂y
= 0 (2)

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ υ

[
∂2u

∂x2
+ ∂2u

∂y2

]
(3)

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p

∂y
+ υ

[
∂2v

∂x2
+ ∂2v

∂y2

]
+ gβT (T − Tc)

− gβc(c − cl) + σB2
o

ρ
v (4)

u
∂T

∂x
+ v

∂T

∂y
= α

[
∂2T

∂x2
+ ∂2T

∂y2

]
+ Qo

ρCp

(T − Tc) (5)

u
∂c

∂x
+ v

∂c

∂y
= D

[
∂2c

∂x2
+ ∂2c

∂y2

]
(6)

Where Bo is the magnetic induction vector in Tesla, σ is the
electrical conductivity, A m/V, Qo, heat generation or absorp-
tion coefficient, W/m3 ◦C, and D is the mass diffusivity, m2/s.
The boundary conditions are:

• u = v = 0.0, T = Th and c = ch, at x = 0,
• u = v = 0.0, T = Tc and c = cl , at x = L

and at y = 0 and y = H

u = v = ∂T

∂y
= ∂c

∂y
= 0

And introducing the following dimensionless groups for the
governing equations,

X = x

L
, Y = y

L
, U = uL

α
, V = vL

α
, P = pL2

ρ∗
oα2

θ = T − Tc and C = c − cl (7)

Th − Tc ch − cl
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A set of governing equations is obtained as:

∂U

∂X
+ ∂V

∂Y
= 0 (8)

U
∂U

∂X
+ V

∂U

∂Y
= −∂P

∂X
+ Pr

[
∂2U

∂X2
+ ∂2U

∂Y 2

]
(9)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ Pr

[
∂2V

∂X2
+ ∂2V

∂Y 2

]

+ RaT Pr[θ − NC] + Ha2Pr × V (10)

U
∂θ

∂X
+ V

∂θ

∂Y
=

[
∂2θ

∂X2
+ ∂2θ

∂Y 2

]
+ φ × θ (11)

U
∂C

∂X
+ V

∂C

∂Y
= 1

Le

[
∂2C

∂X2
+ ∂2C

∂Y 2

]
(12)

Where, Pr is the Prandtl number, RaT is the thermal
Rayleigh number, N is the buoyancy ratio = [βs(ch − cl)]/
[βT (Th − Tc)], Ha is the Hartmann number = BoL

√
σ/μ,

Φ is the dimensionless heat generation or absorption coeffi-
cient = (QoL

2)/(ρcpα), and Le is the Lewis number.
The dimensionless boundary conditions are:

• U = V = 0.0, θ = 1 and C = 1, at X = 0,
• U = V = θ = C = 0.0, at X = 1.

And at Y = 0 and at Y = aspect ratio

U = V = ∂θ

∂Y
= ∂C

∂Y
= 0 (13)

2.1. Nusselt number calculation

Equating the heat transfer by convection to the heat transfer
by conduction at hot wall:

h�T = −k

(
∂T

∂x

)
x=0

(14)

Introducing the dimensionless variables, defined in Eq. (7),
into Eq. (14), gives:

Nul = −
(

∂θ

∂X

)
X=0

(15)

The average Nusselt number is obtained by integrating the
above local Nusselt number over the vertical wall:

Nu = − 1

A

A∫
0

(
∂θ

∂X

)
X=0

dY (16)

2.2. Sherwood number calculation

Equating the extracted mass transfer by convection to the
added mass transfer to the cavity gives:

hs�c = −D

(
∂c

∂x

)
(17)
x=0
Introducing the dimensionless variables, defined in Eq. (7),
into Eq. (14), gives:

Shl = −
(

∂C

∂X

)
X=0

(18)

The average Sherwood number is obtained by integrating the
above local Sherwood number over the vertical wall:

Sh = − 1

A

A∫
0

(
∂C

∂X

)
X=0

dY (19)

3. Solution procedure

The governing equations were solved using the finite vol-
ume technique developed by Patankar [6]. This technique was
based on the discretization of the governing equations using
the central difference in space. Firstly, the number of nodes
used was checked. The deviations between the results ob-
tained for domain (22 × 62) and (82 × 242) were less than
0.15%. Therefore, throughout this study, the number of grids
(42 × 122) was used. The 42 grid points in X-direction were
enough to resolve the thin boundary layer near the vertical
walls. To calculate both Nusselt and Sherwood numbers, we
use numerical differentiations, (∂θ/∂X)X=0 and (∂θ/∂X) =
Lim�X→0(�θ/�X). Therefore, at the vertical wall we need
very fine grids to obtain accurate results. In X-direction, the
width of 5 control volumes close to both the vertical bound-
aries were 1/4 the width of the central control volumes. Also
the bottom and top surfaces are assumed adiabatic and im-
permeable. Therefore in Y -direction, we do not need numeri-
cal differentiations. Therefore, the height of 5 control volumes
close to both the horizontal boundaries were 1/4 the height of
the central control volumes. The discretization equations were
solved by the Gauss–Seidel method. The iteration method used
in this program is a line-by-line procedure, which is a com-
bination of the direct method and the resulting Tri Diagonal
Matrix Algorithm (TDMA). The convergence of the iteration
is determined by the change in the average Nusselt and Sher-
wood numbers as well as other dependent variables through
one hundred iterations to be less than 0.01% from its initial
value. Fig. 2 shows the convergence and stability of the solu-
tion.

4. Program validation and comparison with previous
research

In order to check on the accuracy of the numerical tech-
nique employed for the solution of the problem considered in
the present study, it was validated by performing simulation
for double-diffusive convection flow in a vertical rectangular
enclosure with combined horizontal temperature and concen-
tration gradients and in the presence of magnetic field and heat
generation effects which were reported by Chamkha and Al-
Naser [26]. Fig. 3 plots the predicted values for average Nus-
selt numbers over a range for Hartmann from 0 to 50 for the
present solution and the results published by Chamkha and Al-
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Fig. 2. Convergence and stability of the solution RaT = 105, N = 1, Ha = 50
and φ = 1.

Fig. 3. Comparison for average Nusselt number with Chamkha and Al-Naser
[26] results, N = −0.8, GrT = 105, Pr = 1, Le = 2 and A = 2.

Naser [26]. In the figure, the heat generation coefficient equals
to zero and one. The following parameters were kept constant
N = −0.8, GrT = 105, Pr = 1, Le = 2 and A = 2. In addi-
tion, Fig. 4 plots the values of the average Sherwood number for
the same previous conditions. The maximum deviation between
the results through this range was within two percent. Some of
this deviation may be from the accuracy in the measuring from
the graphs or from the solution techniques. Also, Fig. 5(a) and
(b) present comparisons for the isotherms, concentration con-
tours, density and streamlines contours of the present work at
N = −0.8, RaT = 105, Ha = 25, Pr = 1, Le = 2 and φ = 0
and Chamkha and Al-Naser [26]. The figure shows good agree-
ment.
Fig. 4. Comparison for average Sherwood number with Chamkha and Al-Naser
[26] results, N = −0.8, GrT = 105, Pr = 1, Le = 2 and A = 2.

5. Results and discussion

In this study, the Prandtl number, Pr is kept constant at
Pr = 0.7, aspect ratio, A = 2 and Le = 1. The base case in
this study is made with thermal Rayleigh number RaT = 106,
Hartmann number Ha = 50, buoyancy ratio N = 1 and dimen-
sionless heat generation φ = 1. The numerical results for the
streamline, density, isothermals and isoconcentration contours
for various values of thermal Rayleigh number RaT , Hartmann
number Ha, buoyancy ratio N , and the heat generation or ab-
sorption coefficient φ, will be presented and discussed. In addi-
tion, the results for both average Nusselt, and average Sherwood
numbers, at various conditions will be presented and discussed.

Fig. 6 presents the effect of thermal Rayleigh number on the
streamline, density, isothermals and isoconcentration contours
for Hartmann number Ha = 50, Le = 1, Pr = 0.7, N = 1 and
φ = 1. In this figure the effect of both thermal buoyancy force
and solutal buoyancy force are equal. Therefore, the double dif-
fusive flow is applicable. In addition φ = 1, a heat generation is
also considered. For low thermal Rayleigh number RaT = 103,
the conduction regime is dominant. The isotherms and isocon-
centration are parallel lines. These lines are parallel to the ver-
tical cavity walls. Also, the dimensionless density lines are par-
allel. The flow consists of a very weak clockwise cell with max-
imum strength Ψmax = 0.1. Also, it can be seen from the figure
an equal spacing separates the isoconcentration lines. On the
other hand a non-equal spacing separates the isothermal lines,
a wider gab is observed near the hot wall. In ordinary double
diffusive flow with out magnetic field nor heat generation nor
absorption, the isothermals and isoconcentrations must be simi-
lar for Le = 1. But in our condition, if a heat source is imposed,
it is opposing the heat flow from hot wall. Moreover, the cold
wall receives much heat than that input by the hot one. There-
fore, near the hot wall, the value of temperature gradient is less
than that near the cold wall. As the thermal Rayleigh number is
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Fig. 5. Comparison with Chamkha and Al-Naser [26], RaT = 105, Ha = 25, Pr = 1, Le = 2 and φ = 0.
increased RaT = 104, the convection mode is pronounced, the
flow cell becomes stronger with maximum strength Ψmax = 1.
Since, the cell is coming to the hot wall from the cavity bot-
tom and departs from it at the cavity top, both heat and mass
transfer at the cavity bottom is higher than at the top. The fig-
ure shows, the isothermals and concentrations are closer to the
hot wall in the lower region. Furthermore, the effect of heat
generation already exists, as mentioned above; the temperature
gradient is smaller than the concentration gradient. At thermal
Rayleigh number 106, the convection is dominant, the circu-
lating cell is very strong with maximum strength Ψmax = 24.
The streamlines are crowded near the cavity wall and the cavity
core is empty. As well as both isothermals and isoconcentra-
tions are stratified in vertical direction except near the insulated
surfaces of the enclosure and appear as horizontal lines in the
cavity core. In addition, the heat generation hasn’t any signifi-
cant effect,

Fig. 7 illustrates the effect of Hartmann number Ha, on
the streamlines, density, isothermals and isoconcentrations con-
tours. To highlight on the effect of Ha, the thermal Rayleigh
number is kept constant RaT = 106, Pr = 0.7, Le = 1, N = 1
and φ = 1. Without magnetic field Ha = 0, a very strong clock-
wise cell is observed as well as the streamlines are very crowded
near the vertical walls. Also it is seen horizontal distributions
for density, isothermal and concentrations in the cavity core.
As the magnetic field is imposed Ha = 20, the flow strength
slightly reduces and the streamlines penetrates slightly to the
cavity core. In addition two small cells appear at the middle cav-
ity height, one in each side. As the Hartmann number increases,
the flow strength is damped more, the small cells disappeared,
and the streamlines penetrate more towards the cavity center.
Consequently, a reduction on the temperature and concentra-
tion gradients near the cavity wall and they are tilted upward in
the cavity core.

The effect of heat generation or absorption coefficient inside
the cavity φ, on the different contours is shown in Fig. 8 for
RaT = 106, Pr = 0.7, Le = 1, N = 1 and Ha = 50. Without
heat source or sink φ = 0, the flow is one big central clockwise
cell, the flow moves upwards near the hot wall and downwards
near the cold one. In addition, the density, isothermals and iso-
concentrations are horizontal lines in the cavity core. As heat
absorbed is applied φ < 0, according to the conservation of en-
ergy law; the rate of heat transfer from the hot wall is higher
than the rate of heat received by the cold one. So the fluid
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Fig. 6. Streamlines, density, isothermal and isoconcentration contours for Ha = 50, Le = 1, N = 1 and φ = 1 (a) RaT = 103, (b) RaT = 104, (c) RaT = 105,
(d) RaT = 106.
velocity near hot wall is higher than that near the cold one.
Consequently, the hot wall attracts the cell in the left direction.
Furthermore, the temperature gradient increases near the hot
wall and the isothermal shifted upwards. As the heat absorp-
tion coefficient increases, the cell shifts slightly upwards and
more towards to hot wall as well as the isothermals moves up-
wards. On the other hand, the density contour doesn’t change.
The heat absorption has a minor effect on the isoconcentrations
especially at the upper portion of the cavity, which has a strong
flow, the straight lines is destroyed. The presence of heat source
within the enclosure φ > 0, causes an increase in the fluid tem-
perature. So the heat transfer from the hot wall is reduced and
the heat transfer to the cold is increased. So the cell is shifted
right. As the heat generation increases, the fluid temperature
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Fig. 7. Streamlines, density, isothermal and isoconcentration contours for RaT = 106, Le = 1, N = 1 and φ = 1 (a) Ha = 0, (b) Ha = 20, (c) Ha = 50, (d) Ha = 100.
increases and reaches more than the hot wall temperature in
the upper portion of the cavity. Therefore, the direction of heat
transfer reverses and become from the fluid to the hot wall. Con-
sequently, a counterclockwise small cell appeared at the upper
left corner. In addition a concentration plume from left lower
part is noticed. It is interesting to explore the effect of these phe-
nomena on the distribution for both local Nusselt and Sherwood
numbers over the hot wall. Figs. 9 and 10 represent these dis-
tributions. In general, the local Nusselt number has maximum
values at the cavity bottom and its value decreases as we move
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Fig. 8. Streamlines, density, isothermal and isoconcentration contours for RaT = 106, Le = 1, N = 1 and Ha = 50 (a) φ = 25, (b) φ = 10, (c) φ = 0, (d) φ = −25,
(e) φ = −50.
upwards. The local Nusselt number decreases as φ increases.
For strong heat source φ = 25, the local Nusselt has a nega-
tive value at the upper section of the cavity. This means that,
the heat is transferred from the fluid to the hot wall. The sign
of the local Nusselt changes when the small counterclockwise
cell appears. If we return to Fig. 8 it is noticeable that the ab-
solute value for the temperature gradient has a maximum value
at this position, since this cell is coming to the hot wall at the
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Fig. 9. Effect of heat generation or absorption coefficient φ, on local Nusselt
number, RaT = 106, Le = 1, N = 1 and Ha = 50.

Fig. 10. Effect of heat generation or absorption coefficient φ, on local Sherwood
number, RaT = 106, Le = 1, N = 1 and Ha = 50.

upper corner. Consequently, the absolute value for local Nusselt
has maximum value. This also can be observed from the high
density of the isothermal contours at this section. On the other
hand, the heat source or sink have no significant effect on the
local Sherwood number.

The combined effect of thermal Rayleigh number and Hart-
mann number on the average Nusselt and Sherwood numbers is
presented in Figs. 11 and 12 for Le = 1, Pr = 0.7, φ = 1 and
N = 1. Without imposing the magnetic flux Ha = 0, both aver-
age Nusselt and Sherwood numbers increases with the thermal
Rayleigh number. In addition, for the same value of thermal
Rayleigh number, as the magnetic field is increased both aver-
age Nusselt and Sherwood numbers decreases. Furthermore, at
Fig. 11. Nusselt number vs. RaT for different Ha, Le = 1, φ = 1 and N = 1.

Fig. 12. Sherwood number vs. RaT for different Ha, Le = 1, φ = 1 and N = 1.

Hartmann number Ha > 20, both the average Nusselt and Sher-
wood numbers have constant values over a range of thermal
Rayleigh number. This range increases with increasing Hart-
mann number. It is interesting to note that this phenomenon was
detected experimentally by Ujihara et al. [1].

The combined effect for the magnetic field and heat source
or sink on both average Nusselt and Sherwood numbers is il-
lustrated in Figs. 13 and 14. For constant RaT = 106, Le = 1,
Pr = 0.7 and N = 1. It is observed that both Nu and Sh have
a decreasing trend with increases in Hartmann number. In ad-
dition, it is observed that heat generation (φ > 0) decreases
the average Nusselt number while heat absorption (φ < 0) in-
creases it. However, heat generation (φ > 0) and heat absorp-
tion (φ < 0), slightly decrease the average Sherwood number.
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Fig. 13. Nusselt number vs. Hartmann number for different φ, RaT = 106,
Le = 1 and N = 1.

Fig. 14. Sherwood number vs. Hartmann number for different φ, RaT = 106,
Le = 1 and N = 1.

As expected, the effect of the heat generation or absorption co-
efficient φ is more pronounced on the values of Nusselt than on
Sherwood. Moreover, for heat source with high coefficient, the
sign of the average Nusselt number is changed from positive to
negative.

The influence of the buoyancy ratio N on the average Nus-
selt and Sherwood numbers for different Hartmann number is
shown in Figs. 15 and 16, respectively, for RaT = 106, Le = 1
and φ = 1. It is interesting to observe from these figures the
existence of minimum values in both average Nusselt and Sher-
wood numbers for a buoyancy ratio of about −1. The values of
Nu and Sh tend to increase with increasing the absolute values
Fig. 15. Average Nusselt number vs. buoyancy ratio for different Hartmann
numbers, RaT = 106, Le = 1 and φ = 1.

Fig. 16. Average Sherwood number vs. buoyancy ratio for different Hartmann
numbers, RaT = 106, Le = 1 and φ = 1.

of Buoyancy ratio. The existence of such minimum values in
Nusselt and Sherwood has been reported in the literature.

6. Conclusions

Steady heat and mass transfer by natural convection flow of a
heat generating fluid inside a rectangular enclosure in the pres-
ence of a transverse magnetic field was studied numerically.
The finite-difference method was employed for the solution of
the present problem. Comparisons with previously published
work on special cases of the problem were performed and found
to be in good agreement. Graphical results for various paramet-
ric conditions were presented and discussed. The study revealed
the following:
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The heat and mass transfer mechanisms and the flow charac-
teristics inside the enclosure depended strongly on the strength
of the magnetic field and heat generation or absorption effects.
The magnetic field was found to reduce the heat transfer and
fluid circulation within the enclosure.

The average Nusselt number was increased in the presence
of a heat sink while it was decreased when a heat source was
present. The sign of the average Nusselt number was changed
from positive to negative in the case of high heat generation.

The presence of heat source or heat sink slightly reduces
the average Sherwood number. For Hartmann number Ha > 20,
both the average Nusselt and Sherwood numbers have constant
values over a range of thermal Rayleigh number, this range in-
creases with increasing Hartmann number. Finally the average
Nusselt and Sherwood numbers have minimum values at buoy-
ancy ratio N = 1.
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